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COMMENT 

Exact bound-state solutions of the potential 
V(Y) = - Z e 2 / ( r  + p )  

H De Meyert and G Vanden Berghe 
Laboratorium voor Numerieke Wiskunde en Informatica, RijksuniversiteitGent, 
Krijgslaan 281 - S9, B-9000 Gent, Belgium 

Received 23 October 1989 

Abstract. High-accuracy approximations of the bound-state energies of the potential 
V ( r )  = - Z e 2 / ( r  + 8 )  are obtained by means of the dynamical group method. Certain 
bound-state solutions of the Schrodinger problem are constructed in analytic closed form. 

1. Introduction 

In a recent paper [l] attention has been drawn to the problem of determining the 
energy eigenvalues of the cut-off Coulomb potential 

(1) 

which serves as a model of the potential due to a smeared charge. Within the framework 
of the shifted 1/N expansion method an approximation formula for an estimate of 
energy eigenvalues for any angular momentum state has been established in [l]. In 
particular, the s-wave bound states are compared with the results of Mehta and Patil 
[2] which have been obtained from a dispersion theoretical study. 

Before discussing exact analytic eigenstates of the potential (1) we shall establish 
high-accuracy approximations of the bound-state eigenvalues by means of the dynam- 
ical group approach. This technique has been successfully applied in the past to a 
variety of perturbed Coulomb potentials, e.g. a class of screened Coulomb potentials 
[3], the exponential cosine screened Coulomb potential [4], the HulthCn potential [5 ] ,  
etc. Without going into the details of the technique which can be found in [3-51 let 
us mention that first an energy functional R(E) is constructed out of the stationary 
Schrodinger equation which is multiplied on the left by r (r  + p )  and in which rp2  and 
r are replaced by the SO(2,l) Lie algebra operators K, + K ,  and K, - K, respectively. 
Furthermore, this energy functional is tilted into a parameter-dependent functional 

where K ,  is the operator which together with K, and K, closes into the non-compact 
Lie algebra SO(2, l), 8 being the tilting angle. Introducing the orthonormal group state 
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basis Inl) in which the compact generator K3 is diagonal 

K3 jnl) = n Inl) 

( K ,  f iK,) Inl) = [ ( I  + 1 f n)(fn - 1)]1’2 In f 11) (3) 

( K i  - K:  - Kf) Inl) = 1(I + 1 )  In/) 

the non-zero matrix elements of @E,  6) associated with the potential (1) with Ze2  = 1 
are given by: 

(HI I Q E ,  e)  1 ni) = ($  - $w2)n2 + (p /20~ - - ~ p ~ ) ~  + # I  + I ) ( ;  + E ~ ~ )  

( n  f 21 I fi(E,e) I ni) = a(-; - E W ~ ) [ ( ,  T I ) ( ~  T I f i ) (n I k k I ~f: 2)p” 

( n  f 11 I fi(E,O) I nl) = ; (p /2w + w + Epo k + (2n If: 1)Ew2)[(n T l ) (n  k I k (4) 

with 

w = ewe. (5) 

Notice that for any fixed value of 1 the matrix (n’1 I fi(E,6) I nl) is a five-band matrix 
and that its elements are linear in E ,  i.e. 

(n’l I Q E ,  e )  I nI) = an,,, + ~b,,,,. (6)  

Since Q ( E ,  6) leaves the 1 value unchanged its nth eigenstate associated with a particular 
I value can be expanded in the orthonormal SO(2,l)  group states as follows: 

X 

i=l+l 

and the condition that fi(E,,, 6) 1 qnl) = 0 yields [5 ]  

The set of equations (8) have the appropriate form to establish a Gauss-Seidel iteration 
scheme [4,5] for the approximation of the eigenvalue E,,/. If the scheme is convergent 
the consecutive approximations will tend to a limit which is the exact eigenvalue ,En,. 
In practice, it is found that the rate of convergence strongly depends upon the choice 
of the tilting parameter w. In tables 1 and 2 we list for the n = 1,2,3,4 states and 
for a range of p values, the approximate values of E,, as they were obtained after 
an indicated number of iterations. The value of w used is also indicated. It should 
be remarked that the rate of convergence is strongly w dependent for the smaller p 
values. In fact, there is numerical evidence that the series of approximating values is 
an asymptotically convergent series and therefore in the domain of p e 1 an accuracy 
of only six decimal digits can be attained after 400 iterations. These results are shown 
in table 1. In contrast, for values of p 2 1 the rate of convergence is generally so 
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Table 1. Energy eigenvalues ( - E n / )  of the potential (1) with ZeZ = 1 as a function of B 
( B  < 1) for different excited states in atomic units. In square brackets are indicated the 
value of o and the number of iterations. 

B 1s 2s 2P 3s 3P 

O.OOO1 0.499 820 
[0.21, 4501 

0.001 0.498 044 
[0.21, 4501 

0.01 0.482 107 
[0.23, 4001 

0. : 0.387 544 
[0.25, 3001 

0.124 977 
[1.20, 450) 

0.124 759 
[1.20, 4501 

0.122 742 
[1.24, 4501 

0.109 508 
[1.37, 4501 

0.124 992 
[l.OOo 05, 2001 

[1.005, 2001 
0.124 917 

0.124 177 
[1.05, 2001 

0.117 535 
[1.2, 2001 

0.055 5490 
[3.0001, 2001 

0.055 4884 
[3.055, 3001 

0.054 8935 
[2.15, 4001 

0.050 8100 
[2.30, 4001 

0.055 5531 
[2.03, 3501 

0.055 5309 
[2.04, 350) 

0.055 3112 
[2.05, 3501 

0.053 3093 
[2.12, 3501 

B 3d 4s 4P 4d 4f 

O.ooO1 0.055 5541 
[1.8, 3501 

0.001 0.055 5408 
[1.8, 3501 

0.01 0.055 4081 
[1.85, 3501 

0.1 0.054 1366 
[1.90, 3501 

0.031 2472 
[4.0005, 3001 

0.031 2229 
[4.005, 3001 

0.030 9787 
[3.1, 3501 

0.029 2169 
[3.3, 3501 

0.031 2489 
[3.0005, 4001 

[3.005, 4001 
0.031 2396 

0.031 1468 
[3.05, 4001 

0.030 2949 
[3.11, 4001 

0.031 2494 
[2.9, 3001 

0.031 2438 
[2.9, 2501 

0.031 1877 
[2.9, 2501 

0.030 6484 
[3.0, 2501 

0.031 2496 
[2.4, 2501 

0.031 2455 
[2.4, 2501 

0.031 2055 
[2.4, 2501 

0.030 8136 
[2.4, 2501 

high that the accuracy of the approximations is completely determined by the accuracy 
of machine floating-point arithmetics. In table 2 bound-state energy values are listed 
with a precision of 12 decimal digits; these can serve as benchmark values for other 
approximation techniques. Finally, it should be indicated that, although the number 
of iterations mentioned in the tables seems rather high, the calculation efforts are 
nevertheless extremely low. 

Close inspection of table 2 shows that the eigenvalues corresponding to the states 
In = 1 + 1,1) with p = 1 + 2 seem to be rigorously given by the formula: 

1 
El+l,,(P = 1 + 2) = -___ 2(1+ 2)* 

( 1  2 0) (9) 

which coincides with the formula for the eigenvalues E,+2,,+I(P = 0) of the pure 
Coulomb potential. Since it can hardly be believed that this is merely a coincidence we 
shall prove (9) by constructing in closed form the corresponding eigenstates. We make 
a distinction between the cases 1 = 0 and 1 2 1. 

2. Exact s-wave bound states 

The radial Schrodinger equation for the potential (1) with Z e 2  = 1 is given by 
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Table 2. Energy eigenvalues (-En/) as a function of B (P 2 1). Conventions and notation 
are the same as in table 1. 

B I S  2s 2P 

1.0 0,180 367 050 302 
[1.1, 2001 

[l.2, 2001 

[2.0, 2001 

[2.2, 2001 

2.0 0.125 OOO OOOooO 

3.0 0.098 215 640 0099 

4.0 0.081 868 074 5499 

5.0 0.070 670 280 2201 
[2.3, 1001 

10.0 0.043 438 719 2643 
[4.0, 1001 

15.0 0.032 071 427 3534 
[4.5, 1001 

0.0695 806 627 209 
[2.14, 3501 
0.0544 740 424 109 
[2.8, 2001 
0.045 979 036 3680 
[3.2, 2001 
0.040 287 379 2663 
[3.6, 200) 
0.036 119 245 5637 
[4.0, 2001 
0.024 810 356 9956 
[6.0, 1001 
0.019 439 283 7178 
[7.0, 1001 

0.082 862 420 4409 
[1.7, 2001 
0.065 732 007 1888 
[2.6, 2001 
0.055 555 555 5556 
[2.8, 1001 
0.048 598 494 1002 
[3.0, 1001 
0.043 458 403 5678 
[3.2, 1001 
0.029 446 515 7059 
[4.0, 1001 
0.022 825 578 4915 
[5.0, 1001 

P 3s 3P 3d 

1.0 0.036 814 197 6453 0.041 787 661 9249 0.045 010 006 4657 
[3.184, 3501 [2.7, 350) [2.0, 1501 

2.0 0.030 640 352 5593 0.035 263 924 1315 0.038 787 135 7145 
[3.824, 3001 [3.16, 2501 [2.5, 1501 

3.0 0.026 884 267 6256 0.031 054 596 7323 0.034 479 644 4021 
[4.31, 2501 [3.7, 1501 [3.0, 1001 

4.0 0.024 232 233 4305 0.028 008 531 6175 0.031 250 OOO oo00 
[4.8, 2001 [3.9, loo] [3.2, 1001 

5.0 0.022 212 315 7296 0.025 658 945 5530 0.028 705 688 9891 
[5.2, 2001 [4.3, 1001 [3.5, 1001 

10.0 0.016 341 468 8665 0.018 748 153 0514 0.021 024 301 6457 
[6.7, 1501 [5.6, 1001 [4.0, 1001 

15.0 0.013 31 1 370 1906 0.015 168 945 9759 0.016 971 771 0564 
[8.0, 1501 [6.5, 1001 [5.0, 1001 

P 4s 4P 4d 4f 

1.0 0.022 756 978 1 
[4.22, 3501 

2.0 0.019 651 191 5589 
[5.0, 3001 

3.0 0.017 668 201 1559 
I5.5, 3001 

4.0 0.016 220 234 7926 
[6.0, 2501 

5.0 0.015 088 441 0635 
[6.25, 2001 

10.0 0.011 638 307 1155 
[7.9, 2001 

[9.5, 2001 
15.0 0.009 749 622 28609 

0.025 134 401 7727 
[3.74, 3501 
0.021 986 758 6724 
[4.27, 3001 
0.019 854 092 6772 
f4.73. 2001 
0.018 255 292 1756 
[5.01. 2001 
0.016 987 444 5484 
[5.4, 1501 
0.013 060 936 8874 
[7.0, 1001 
0.010 893 305 6586 
p.0, 1001 

0.026 625 059 9928 
[3.37, 3001 
0.023 706 656 0757 
[3.83, 2001 
0.021 590 815 5272 
[4.25, 1501 
0.019 947 639 9842 
[4.6, 1501 
0.018 616 105 5722 
[4.9, 1001 

0.014 373 461 1533 
[6.2, 1001 
0.01 1 979 730 0989 
[7.0, 1001 

0.027 588 159 8846 
[2.6, 2001 
0.024 972 051 5698 
[3.3, 1501 
0.022 960 237 9736 
[3.8, 1001 
0.021 342 109 5966 
[4.2. 1001 
0.020 ooo ooo m 
[4.7. 1001 
0.015 576 600 0898 
[5.8. 100) 
0.013 007 413 6328 
[6.5. 1001 
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with boundary conditions 

y ( 0 )  = y ( c 0 )  = 0. (1 1) 

Putting I = 0 in (10) and performing the change of variables p = r + p we obtain the 
differential equation of the pure Coulomb problem 

but with the modified boundary conditions: 

Y ( B )  = Y (+a) = 0. (13) 

The pure Coulomb eigenstates which solve (12) and satisfy the conditions y,(O) = 
y,(+co) = 0 are known to be given by [6]: 

where 

and 

Also nk counts the number of zeros of the solution y,(p) in IO, +CO[. Next we investigate 
whether any of the Coulomb states (14) can obey the boundary conditions (13). If 
nk = 0 this can only happen for p = 0 which leads to a triviality. But, with ni = 1, it 
turns out that 

showing that 

y ( r )  = ( r  + 2)e++’)/’[l - ( r  + 2)/2] - r (1  + r/2) e-’/’ (18) 

is a solution of (10) (with I = 0) satisfying (1 1). Since this solution clearly has no zeros 
in ]O,+CO[ it must be identified with a 1s state and on account of (16) our formula (9) 
is already valid for l = 0. 

This approach allows us to derive also exact energy values for certain irrational 
p values. For example, with n: = 2 the condition y,(f l)  = 0 gives rise to a quadratic 
equation in with roots 3(3 f 4 ) / 2 .  The largest root p = 7.098 076 21 ... yields a 
solution y ( r )  which has no zeros in IO, +a[ and thus corresponds to a 1s state, whereas 
the lowest root p = 1.901 923 79..  . yields a solution which has one zero in IO, +CO[ and 
thus corresponds to a 2s state. Hence, according to (16) 

(19) 

Clearly, this way of constructing exact s-wave bound states can be continued with 
higher values of n:. 

E, ,o(p = 3(3 + J5)/2)  = E2&I = 3(3 - v 5 ) / 2 )  = -h. 
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3. Exact bound-state solutions for I # 0 

I t  is clear that when 1 # 0 the differential equation (10) can no longer be transformed 
into the Coulomb equation by a change of variables. Instead we look in analogy with 
(18) for solutions of (10) of the form 

y ( r )  = rpcvr(l + Ar) i. # 0 (20) 

satisfying (11). Direct substitution of (20) into (IO) gives rise to a system of five 
nonlinear equations in the five parameters p, v, %, E and j?. On condition that j? # 0 
and 1. # 0 this system has the unique solution: 

1 A=- 
1 + 2  1 + 2  

1 
p = 1 + 1  v = - -  

E=---- p = 1 + 2  
1 

2(1+ 2)* 

and since 1 > 0 the proposed eigenstate (20) has no zeros on ]O,+co[ and must be 
associated with the quantum number n = 1 + 1. This finishes the proof of (9) for all 
12 1. Moreover, it provides an alternative proof of (9) for the case 1 = 0 whereby one 
can verify that the solution (20) reduces to the form (18). 
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