Exact bound-state solutions of the potential $V(r)=-Z e^{2} /(r+\beta)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 231323
(http://iopscience.iop.org/0305-4470/23/7/034)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:04

Please note that terms and conditions apply.

COMMENT

Exact bound-state solutions of the potential $V(r)=-Z e^{2} /(r+\beta)$

H De Meyer \dagger and G Vanden Berghe
Laboratorium voor Numerieke Wiskunde en Informatica, Rijksuniversiteit-Gent, Krijgslaan 281 - S9, B-9000 Gent, Belgium

Received 23 October 1989

Abstract

High-accuracy approximations of the bound-state energies of the potential $V(r)=-Z e^{2} /(r+\beta)$ are obtained by means of the dynamical group method. Certain bound-state solutions of the Schrödinger problem are constructed in analytic closed form.

1. Introduction

In a recent paper [1] attention has been drawn to the problem of determining the energy eigenvalues of the cut-off Coulomb potential

$$
\begin{equation*}
V(r)=-\frac{Z e^{2}}{r+\beta} \quad(\beta>0) \tag{1}
\end{equation*}
$$

which serves as a model of the potential due to a smeared charge. Within the framework of the shifted $1 / N$ expansion method an approximation formula for an estimate of energy eigenvalues for any angular momentum state has been established in [1]. In particular, the s-wave bound states are compared with the results of Mehta and Patil [2] which have been obtained from a dispersion theoretical study.

Before discussing exact analytic eigenstates of the potential (1) we shall establish high-accuracy approximations of the bound-state eigenvalues by means of the dynamical group approach. This technique has been successfully applied in the past to a variety of perturbed Coulomb potentials, e.g. a class of screened Coulomb potentials [3], the exponential cosine screened Coulomb potential [4], the Hulthén potential [5], etc. Without going into the details of the technique which can be found in [3-5] let us mention that first an energy functional $\Omega(E)$ is constructed out of the stationary Schrödinger equation which is multiplied on the left by $r(r+\beta)$ and in which $r p^{2}$ and r are replaced by the $\mathrm{SO}(2,1)$ Lie algebra operators $K_{1}+K_{3}$ and $K_{1}-K_{3}$ respectively. Furthermore, this energy functional is tilted into a parameter-dependent functional

$$
\begin{equation*}
\Omega(E) \longrightarrow \bar{\Omega}(E, \theta)=\mathrm{e}^{-\mathrm{i} \theta K_{2}} \Omega(E) \mathrm{e}^{\mathrm{i} \theta K_{2}} \tag{2}
\end{equation*}
$$

where K_{2} is the operator which together with K_{1} and K_{3} closes into the non-compact Lie algebra $\mathrm{SO}(2,1), \theta$ being the tilting angle. Introducing the orthonormal group state

[^0]basis $|n l\rangle$ in which the compact generator K_{3} is diagonal
\[

$$
\begin{align*}
& K_{3}|n l\rangle=n|n l\rangle \\
& \left(K_{1} \pm \mathrm{i} K_{2}\right)|n l\rangle=[(l+1 \pm n)(\pm n-l)]^{1 / 2}|n \pm 1 l\rangle \tag{3}\\
& \left(K_{3}^{2}-K_{1}^{2}-K_{2}^{2}\right)|n l\rangle=l(l+1)|n l\rangle
\end{align*}
$$
\]

the non-zero matrix elements of $\bar{\Omega}(E, \theta)$ associated with the potential (1) with $Z e^{2}=1$ are given by:
$\langle n l| \bar{\Omega}(E, \theta)|n l\rangle=\left(\frac{1}{4}-\frac{3}{2} E \omega^{2}\right) n^{2}+(\beta / 2 \omega-\omega-E \beta \omega) n+\frac{1}{2} l(l+1)\left(\frac{1}{2}+E \omega^{2}\right)$
$\langle n \pm 1 l| \bar{\Omega}(E, \theta)|n l\rangle=\frac{1}{2}\left(\beta / 2 \omega+\omega+E \beta \omega \pm \frac{1}{2}+(2 n \pm 1) E \omega^{2}\right)[(n \mp l)(n \pm l \pm 1)]^{1 / 2}$
$\langle n \pm 2 l| \bar{\Omega}(E, \theta)|n l\rangle=\frac{1}{4}\left(-\frac{1}{2}-E \omega^{2}\right)[(n \mp l)(n \mp l \pm 1)(n \pm l \pm 1)(n \pm l \pm 2)]^{1 / 2}$
with

$$
\begin{equation*}
\omega=\mathrm{e}^{-\theta} . \tag{5}
\end{equation*}
$$

Notice that for any fixed value of l the matrix $\left\langle n^{\prime} l\right| \bar{\Omega}(E, \theta)|n l\rangle$ is a five-band matrix and that its elements are linear in E, i.e.

$$
\begin{equation*}
\left\langle n^{\prime} l\right| \bar{\Omega}(E, \theta)|n l\rangle=a_{n^{\prime} n}+E b_{n^{\prime} n} . \tag{6}
\end{equation*}
$$

Since $\bar{\Omega}(E, \theta)$ leaves the l value unchanged its nth eigenstate associated with a particular l value can be expanded in the orthonormal $\mathrm{SO}(2,1)$ group states as follows:

$$
\begin{equation*}
\left|\bar{\psi}_{n l}\right\rangle=\sum_{i=l+1}^{\infty} c_{i}|i l\rangle \tag{7}
\end{equation*}
$$

and the condition that $\bar{\Omega}\left(E_{n l}, \theta\right)\left|\bar{\psi}_{n l}\right\rangle=0$ yields [5]:

$$
\begin{align*}
& E_{n l}=-\frac{\sum_{i} a_{n i} c_{i}}{\sum_{i} b_{n i} c_{i}} \\
& c_{j}=-\frac{\sum_{i, j(i \neq j)} a_{j i} c_{i}+\sum_{i, j(i \neq j)} b_{j i} c_{i} E_{n l}}{a_{j j}+b_{j j} E_{n l}} \quad(j \neq n) . \tag{8}
\end{align*}
$$

The set of equations (8) have the appropriate form to establish a Gauss-Seidel iteration scheme $[4,5]$ for the approximation of the eigenvalue $E_{n i}$. If the scheme is convergent the consecutive approximations will tend to a limit which is the exact eigenvalue E_{n}. In practice, it is found that the rate of convergence strongly depends upon the choice of the tilting parameter ω. In tables 1 and 2 we list for the $n=1,2,3,4$ states and for a range of β values, the approximate values of $E_{n l}$ as they were obtained after an indicated number of iterations. The value of ω used is also indicated. It should be remarked that the rate of convergence is strongly ω dependent for the smaller β values. In fact, there is numerical evidence that the series of approximating values is an asymptotically convergent series and therefore in the domain of $\beta \ll 1$ an accuracy of only six decimal digits can be attained after 400 iterations. These results are shown in table 1. In contrast, for values of $\beta \geq 1$ the rate of convergence is generally so

Table 1. Energy eigenvalues ($-E_{n t}$) of the potential (1) with $Z e^{2}=1$ as a function of β ($\beta<1$) for different excited states in atomic units. In square brackets are indicated the value of ω and the number of iterations.

β	1s	2s	2 p	3 s	3 p
0.0001	0.499820	0.124977	0.124992	0.0555490	0.0555531
	$[0.21,450]$	$[1.20,450]$	$[1.00005,200]$	$[3.0001,200]$	$[2.03,350]$
0.001	0.498044	0.124759	0.124917	0.0554884	0.0555309
	$[0.21,450]$	$[1.20,450]$	$[1.005,200]$	$[3.055,300]$	$[2.04,350]$
0.01	0.482107	0.122742	0.124177	0.0548935	0.0553112
	$[0.23,400]$	$[1.24,450]$	$[1.05,200]$	$[2.15,400]$	$[2.05,350]$
0.1	0.387544	0.109508	0.117535	0.0508100	0.0533093
	$[0.25,300]$	$[1.37,450]$	$[1.2,200]$	$[2.30,400]$	$[2.12,350]$
β	3 d	4 s	4 p	4 d	4 f
0.0001	0.0555541	0.0312472	0.0312489	0.0312494	0.0312496
	$[1.8,350]$	$[4.0005,300]$	$[3.0005,400]$	$[2.9,300]$	$[2.4,250]$
0.001	0.0555408	0.0312229	0.0312396	0.0312438	0.0312455
	$[1.8,350]$	$[4.005,300]$	$[3.005,400]$	$[2.9,250]$	$[2.4,250]$
0.01	0.0554081	0.0309787	0.0311468	0.0311877	0.0312055
	$[1.85,350]$	$[3.1,350]$	$[3.05,400]$	$[2.9,250]$	$[2.4,250]$
0.1	0.0541366	0.0292169	0.0302949	0.0306484	0.0308136
	$[1.90,350]$	$[3.3,350]$	$[3.11,400]$	$[3.0,250]$	$[2.4,250]$

high that the accuracy of the approximations is completely determined by the accuracy of machine floating-point arithmetics. In table 2 bound-state energy values are listed with a precision of 12 decimal digits; these can serve as benchmark values for other approximation techniques. Finally, it should be indicated that, although the number of iterations mentioned in the tables seems rather high, the calculation efforts are nevertheless extremely low.

Close inspection of table 2 shows that the eigenvalues corresponding to the states $|n=l+1, l\rangle$ with $\beta=l+2$ seem to be rigorously given by the formula:

$$
\begin{equation*}
E_{l+1, l}(\beta=l+2)=-\frac{1}{2(l+2)^{2}} \quad(l \geq 0) \tag{9}
\end{equation*}
$$

which coincides with the formula for the eigenvalues $E_{l+2, l+1}(\beta=0)$ of the pure Coulomb potential. Since it can hardly be believed that this is merely a coincidence we shall prove (9) by constructing in closed form the corresponding eigenstates. We make a distinction between the cases $l=0$ and $l \geq 1$.

2. Exact s-wave bound states

The radial Schrödinger equation for the potential (1) with $Z e^{2}=1$ is given by

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} r^{2}}+\left(2 E+\frac{2}{r+\beta}-\frac{l(l+1)}{r^{2}}\right) y(r)=0 \tag{10}
\end{equation*}
$$

Table 2. Energy eigenvalues $\left(-E_{n i}\right)$ as a function of β ($\beta \geq 1$). Conventions and notation are the same as in table 1.

β	Is	2s	2p	
1.0	$\begin{aligned} & 0.180367050302 \\ & {[1.1,200]} \end{aligned}$	$\begin{aligned} & 0.0695806627209 \\ & {[2.14,350]} \end{aligned}$	$\begin{aligned} & 0.0828624204409 \\ & {[1.7,200]} \end{aligned}$	
2.0	$\begin{aligned} & 0.125000000000 \\ & {[1.2,200]} \end{aligned}$	$\begin{aligned} & 0.0544740424109 \\ & {[2.8,200]} \end{aligned}$	$\begin{aligned} & 0.0657320071888 \\ & {[2.6,200]} \end{aligned}$	
3.0	$\begin{aligned} & 0.0982156400099 \\ & {[2.0,200]} \end{aligned}$	$\begin{aligned} & 0.0459790363680 \\ & {[3.2,200]} \end{aligned}$	$\begin{aligned} & 0.0555555555556 \\ & {[2.8,100]} \end{aligned}$	
4.0	0.0818680745499 $[2.2,200]$	$\begin{aligned} & 0.0402873792663 \\ & {[3.6,200]} \end{aligned}$	$\begin{aligned} & 0.0485984941002 \\ & {[3.0,100]} \end{aligned}$	
5.0	$\begin{aligned} & 0.0706702802201 \\ & {[2.3,100]} \end{aligned}$	$\begin{aligned} & 0.0361192455637 \\ & {[4.0,200]} \end{aligned}$	$\begin{aligned} & 0.0434584035678 \\ & {[3.2,100]} \end{aligned}$	
10.0	$\begin{aligned} & 0.0434387192643 \\ & {[4.0,100]} \end{aligned}$	$\begin{aligned} & 0.0248103569956 \\ & {[6.0,100]} \end{aligned}$	$\begin{aligned} & 0.0294465157059 \\ & {[4.0,100]} \end{aligned}$	
15.0	$\begin{aligned} & 0.0320714273534 \\ & {[4.5,100]} \end{aligned}$	$\begin{aligned} & 0.0194392837178 \\ & {[7.0,100]} \end{aligned}$	$\begin{aligned} & 0.0228255784915 \\ & {[5.0,100]} \end{aligned}$	
β	3 s	3 p	3d	
1.0	$\begin{aligned} & 0.0368141976453 \\ & {[3.184,350]} \end{aligned}$	$\begin{aligned} & 0.0417876619249 \\ & {[2.7,350]} \end{aligned}$	$\begin{aligned} & 0.0450100064657 \\ & {[2.0,150]} \end{aligned}$	
2.0	$\begin{aligned} & 0.0306403525593 \\ & {[3.824,300]} \end{aligned}$	$\begin{aligned} & 0.0352639241315 \\ & {[3.16,250]} \end{aligned}$	$\begin{aligned} & 0.0387871357145 \\ & {[2.5,150]} \end{aligned}$	
3.0	$\begin{aligned} & 0.0268842676256 \\ & {[4.31,250]} \end{aligned}$	$\begin{aligned} & 0.0310545967323 \\ & {[3.7,150]} \end{aligned}$	$\begin{aligned} & 0.0344796444021 \\ & {[3.0,100]} \end{aligned}$	
4.0	$\begin{aligned} & 0.0242322334305 \\ & {[4.8,200]} \end{aligned}$	$\begin{aligned} & 0.0280085316175 \\ & {[3.9,100]} \end{aligned}$	$\begin{aligned} & 0.0312500000000 \\ & {[3.2,100]} \end{aligned}$	
5.0	$\begin{aligned} & 0.0222123157296 \\ & {[5.2,200]} \end{aligned}$	$\begin{aligned} & 0.0256589455530 \\ & {[4.3,100]} \end{aligned}$	$\begin{aligned} & 0.0287056889891 \\ & {[3.5,100]} \end{aligned}$	
10.0	$\begin{aligned} & 0.0163414688665 \\ & {[6.7,150]} \end{aligned}$	$\begin{aligned} & 0.0187481530514 \\ & {[5.6,100]} \end{aligned}$	$\begin{aligned} & 0.0210243016457 \\ & {[4.0,100]} \end{aligned}$	
15.0	$\begin{aligned} & 0.0133113701906 \\ & {[8.0,150]} \end{aligned}$	$\begin{aligned} & 0.0151689459759 \\ & {[6.5,100]} \end{aligned}$	$\begin{aligned} & 0.0169717710564 \\ & {[5.0,100]} \end{aligned}$	
β	4 s	4p	4 d	4f
1.0	$\begin{aligned} & 0.0227569781 \\ & {[4.22,350]} \end{aligned}$	$\begin{aligned} & 0.0251344017727 \\ & {[3.74,350]} \end{aligned}$	$\begin{aligned} & 0.0266250599928 \\ & {[3.37,300]} \end{aligned}$	$\begin{aligned} & 0.0275881598846 \\ & {[2.6,200]} \end{aligned}$
2.0	$\begin{aligned} & 0.0196511915589 \\ & {[5.0,300]} \end{aligned}$	$\begin{aligned} & 0.0219867586724 \\ & {[4.27,300]} \end{aligned}$	$\begin{aligned} & 0.0237066560757 \\ & {[3.83,200]} \end{aligned}$	$\begin{aligned} & 0.0249720515698 \\ & {[3.3,150]} \end{aligned}$
3.0	$\begin{aligned} & 0.0176682011559 \\ & {[5.5,300]} \end{aligned}$	$\begin{aligned} & 0.0198540926772 \\ & {[4.73,200]} \end{aligned}$	$\begin{aligned} & 0.0215908155272 \\ & {[4.25,150]} \end{aligned}$	$\begin{aligned} & 0.0229602379736 \\ & {[3.8,100]} \end{aligned}$
4.0	$\begin{aligned} & 0.0162202347926 \\ & {[6.0,250]} \end{aligned}$	$\begin{aligned} & 0.0182552921756 \\ & {[5.01,200]} \end{aligned}$	$\begin{aligned} & 0.0199476399842 \\ & {[4.6,150]} \end{aligned}$	$\begin{aligned} & 0.0213421095966 \\ & \text { [4.2. 100] } \end{aligned}$
5.0	$\begin{aligned} & 0.0150884410635 \\ & {[6.25,200]} \end{aligned}$	$\begin{aligned} & 0.0169874445484 \\ & {[5.4,150]} \end{aligned}$	$\begin{aligned} & 0.0186161055722 \\ & {[4.9,100]} \end{aligned}$	$\begin{aligned} & 0.0200000000000 \\ & {[4.7 .100]} \end{aligned}$
10.0	$\begin{aligned} & 0.0116383071155 \\ & {[7.9,200]} \end{aligned}$	$\begin{aligned} & 0.0130609368874 \\ & {[7.0,100]} \end{aligned}$	$\begin{aligned} & 0.0143734611533 \\ & {[6.2,100]} \end{aligned}$	$\begin{aligned} & 0.0155766000898 \\ & {[5.8,100]} \end{aligned}$
15.0	$\begin{aligned} & 0.00974962228609 \\ & {[9.5,200]} \end{aligned}$	$\begin{aligned} & 0.0108933056586 \\ & {[8.0,100]} \end{aligned}$	$\begin{aligned} & 0.0119797300989 \\ & {[7.0,100]} \end{aligned}$	$\begin{aligned} & 0.0130074136328 \\ & {[6.5,100]} \end{aligned}$

with boundary conditions

$$
\begin{equation*}
y(0)=y(\infty)=0 . \tag{11}
\end{equation*}
$$

Putting $l=0$ in (10) and performing the change of variables $\rho=r+\beta$ we obtain the differential equation of the pure Coulomb problem

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} \rho^{2}}+\left(2 E+\frac{2}{\rho}\right) y(\rho)=0 \tag{12}
\end{equation*}
$$

but with the modified boundary conditions:

$$
\begin{equation*}
y(\beta)=y(+\infty)=0 \tag{13}
\end{equation*}
$$

The pure Coulomb eigenstates which solve (12) and satisfy the conditions $y_{c}(0)=$ $y_{\mathrm{c}}(+\infty)=0$ are known to be given by [6]:

$$
\begin{equation*}
y_{\mathrm{c}}(\rho)=(2 \alpha \rho) \mathrm{e}^{-x \rho} \sum_{p=0}^{n_{c}^{\prime}} \frac{(-1)^{p}}{\left(n_{\mathrm{c}}^{\prime}-p\right)!(p+1)!p!}(2 \alpha \rho)^{p} \quad\left(n_{\mathrm{c}}^{\prime}=0,1,2, \ldots\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{\left(n_{\mathrm{c}}^{\prime}+1\right)} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
E=-\frac{1}{2\left(n_{\mathrm{c}}^{\prime}+1\right)^{2}} \tag{16}
\end{equation*}
$$

Also n_{c}^{\prime} counts the number of zeros of the solution $y_{c}(\rho)$ in $] 0,+\infty[$. Next we investigate whether any of the Coulomb states (14) can obey the boundary conditions (13). If $n_{\mathrm{c}}^{\prime}=0$ this can only happen for $\beta=0$ which leads to a triviality. But, with $n_{\mathrm{c}}^{\prime}=1$, it turns out that

$$
\begin{equation*}
y_{\mathrm{c}}(\beta)=0 \Leftrightarrow \beta=2 \tag{17}
\end{equation*}
$$

showing that

$$
\begin{equation*}
y(r)=(r+2) \mathrm{e}^{-(r+2) / 2}[1-(r+2) / 2] \sim r(1+r / 2) \mathrm{e}^{-r / 2} \tag{18}
\end{equation*}
$$

is a solution of (10) (with $l=0$) satisfying (11). Since this solution clearly has no zeros in $] 0,+\infty$ [it must be identified with a 1 s state and on account of (16) our formula (9) is already valid for $l=0$.

This approach allows us to derive also exact energy values for certain irrational β values. For example, with $n_{\mathrm{c}}^{\prime}=2$ the condition $y_{\mathrm{c}}(\beta)=0$ gives rise to a quadratic equation in β with roots $3(3 \pm \sqrt{3}) / 2$. The largest root $\beta=7.09807621 \ldots$ yields a solution $y(r)$ which has no zeros in $] 0,+\infty[$ and thus corresponds to a 1s state, whereas the lowest root $\beta=1.90192379 \ldots$ yields a solution which has one zero in $] 0,+\infty[$ and thus corresponds to a 2 s state. Hence, according to (16)

$$
\begin{equation*}
E_{1,0}(\beta=3(3+\sqrt{3}) / 2)=E_{2.0}(\beta=3(3-\sqrt{3}) / 2)=-\frac{1}{18} . \tag{19}
\end{equation*}
$$

Clearly, this way of constructing exact s-wave bound states can be continued with higher values of n_{c}^{\prime}.

3. Exact bound-state solutions for $l \neq 0$

It is clear that when $l \neq 0$ the differential equation (10) can no longer be transformed into the Coulomb equation by a change of variables. Instead we look in analogy with (18) for solutions of (10) of the form

$$
\begin{equation*}
y(r)=r^{\mu} \mathrm{e}^{v r}(1+\lambda r) \quad \lambda \neq 0 \tag{20}
\end{equation*}
$$

satisfying (11). Direct substitution of (20) into (10) gives rise to a system of five nonlinear equations in the five parameters μ, ν, λ, E and β. On condition that $\beta \neq 0$ and $\lambda \neq 0$ this system has the unique solution:

$$
\begin{align*}
& \mu=l+1 \quad v=-\frac{1}{l+2} \quad \lambda=\frac{1}{l+2} \\
& E=-\frac{1}{2(l+2)^{2}} \quad \beta=l+2 \tag{21}
\end{align*}
$$

and since $\lambda>0$ the proposed eigenstate (20) has no zeros on $] 0,+\infty[$ and must be associated with the quantum number $n=l+1$. This finishes the proof of (9) for all $l \geq 1$. Moreover, it provides an alternative proof of (9) for the case $l=0$ whereby one can verify that the solution (20) reduces to the form (18).

References

[1] Ray P P and Mahata K 1989 J.Phys. A: Math. Gen 223161
[2] Mehta C H and Patil S H 1978 Phys. Rev. A 1743
[3] Gerry C and Laub J 1984 Phys. Rev. A 301229
[4] De Meyer H, Fack V and Vanden Berghe G 1985 J. Phys. A: Math. Gen. 18 L849
[5] Matthys P and De Meyer H 1988 Phys. Rev. A 381168
[6] Flügge S 1974 Practical Quantum Mechanics (Berlin: Springer)

[^0]: \dagger Research Director of the National Fund for Scientific Research (NFWO Belgium).

